欢迎访问华中科技大学土木工程与力学学院!

公告栏:
网站搜索:

胡洪平

发布者:admin         发布时间:2014-02-19 14:24         浏览次数:

 

undefined

胡洪平:博士、副教授、博士生导师。        Emailhuhp@hust.edu.cn                               Tel027-87559409

湖北省力学学会理事,武汉力学学会党支部书记、秘书长,工程力学教研室主任。20169-20178月,法国国家科学研究院(CNRS)FEMTO研究所国家公派访问学者。200612月获华中科技大学力学博士学位。20092月机械工程博士后出站。

主要从事光声子晶体、超材料、智能结构与振动控制、压电结构与器件、气-液及流-固耦合等方向的研究工作。主持国家自然科学基金面上项目1项、博士点基金1项、博士后基金1项、横向课题1项和校基金2项;作为重要成员参与973项目1项、国家自然科学基金重点项目和面上项目各1项、国家科技重大专项1项、创新交叉重点团队项目(与光电学院合作)、新疆石油技术开发项目等多项研究。获得2009年全国优秀博士学位论文提名奖、湖北省科学技术奖自然科学三等奖、优秀博士后等奖励。主持和作为主要完成人获授权专利4项,其中国家发明专利3项。在国内外权威刊物及学术会议上发表论文70余篇,其中SCI期刊论文40篇。

  主讲本科生课程:工程力学、理论力学、水力学、压电结构与器件、工程材料学。

  主讲研究生课程:智能材料与结构。

  欢迎报考硕士和博士研究生,招收博士后合作研究。

  发表成果如下:

一、 第一作者或通讯作者发表的SCI论文

[1] Jiang, S., Hu, H. P., and Laude, V. Ultra-Wide Band Gap in Two-Dimensional Phononic Crystal with Combined Convex and Concave Holes. physica status solidi (RRL) – Rapid Research Letters, 1700317 (2017)  https://doi.org/10.1002/pssr.201700317

[2] Jiang, S., Hu, H. P., and Laude, V. Low-frequency band gap in cross-like holey phononic crystal strip. Journal of Physics D: Applied Physics, (2017) https://doi.org/10.1088/1361-6463/aa9ec1

[3] Jiang, S., Chen, H., Dai, L., Hu, H., and Laude, V. Multiple low-frequency broad band gaps generated by a phononic crystal of periodic circular cavity sandwich plates. Composite Structures, 176, 294-303 (2017) https://doi.org/10.1016/j.compstruct.2017.05.048

[4] Lian, Z. Y., Hu, H. P., Dai, L. X., Luo, B., Liang, Y. X., and Chen, X. D. Coupling between two kinds of band gaps of a shunted tube piezoelectric phononic crystal. Journal of Intelligent Material Systems and Structures, 28, 2153-2166 (2017)

https://doi.org/10.1177/1045389X16685437

[5] Jiang, S., Dai, L. X., Chen, H., Hu, H. P., Jiang, W., and Chen, X. D. Folding beam-type piezoelectric phononic crystal with a low-frequency and broad band gap. Applied Mathematics and Mechanics-English Edition, 38, 411-422 (2017) https://doi.org/10.1007/s10483-017-2171-7

[6] Hu, H. P., Dai, L. X., Chen, H., Jiang, S., Wang, H. R., and Laude, V. Two methods to broaden the bandwidth of a nonlinear piezoelectric bimorph power harvester. Journal of Vibration and Acoustics, 139, 031008 (2017) https://doi.org/10.1115/1.4035717

[7] Dai, L. X., Hu, H. P., Jiang, S., and Chen, X. D. Two Kinds Equal Frequency Circuits to Achieve Locally Resonant Band Gap of a Circular Plate Attached Alternately by Piezoelectric Unimorphs. Acta Mechanica Solida Sinica, 29, 502-513 (2016)

https://doi.org/10.1016/S0894-9166(16)30268-3

[8] Chen, H., Jiang, S., Dai, L. X., and Hu, H. P. Analysis of a Micro Piezoelectric Vibration Energy Harvester by Nonlocal Electricity Theory. Advances in Mechanical Engineering, 8, 1-10 (2016) https://doi.org/10.1177/1687814016643453

[9] Dai, L. X., Jiang, S., Lian, Z. Y., Hu, H. P., and Chen, X. D. Locally resonant band gaps achieved by equal frequency shunting circuits of piezoelectric rings in a periodic circular plate. Journal of Sound and Vibration, 337, 150-160 (2015) https://doi.org/10.1016/j.jsv.2014.10.026

[10] Wang, Y. J., Lian, Z. Y., Wang, J., and Hu, H. P. Analysis of a piezoelectric power harvester with adjustable frequency by precise electric field method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60, 2154-2161 (2013)

https://doi.org/10.1109/TUFFC.2013.2806

[11] Hu, H. P., Hu, L., Yang, J. S., Hu, Y. T., and Chen, X. D. A piezoelectric spring-mass system as a low-frequency energy harvester IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 60, 846-850 (2013) https://doi.org/10.1109/TUFFC.2013.2633

[12] Zhang, R. Y., and Hu, H. P. A Few Transient Effects in AT-Cut Quartz Thickness-Shear Resonators. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 58, 2758-2762 (2011) https://doi.org/10.1109/TUFFC.2011.2140

[13] Hu, H. P., Hu, Y. T., and Yang, J. S. On the inaccuracy of using Mindlin's first-order plate theory for calculating the motional capacitance of a thickness-shear resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56, 7-8 (2009)

https://doi.org/10.1109/TUFFC.2009.998

[14] Xue, H., and Hu, H. P. Nonlinear characteristics of a circular plate piezoelectric harvester with relatively large deflection near resonance. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 55, 2092-2096 (2008) https://doi.org/10.1109/TUFFC.901

[15] Hu, H. P., Zhao, C., Feng, S. Y., Hu, Y. T., and Chen, C. Y. Adjusting the resonant frequency of a PVDF bimorph power harvester through a corrugation-shaped harvesting structure. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 55, 668-674 (2008) https://doi.org/10.1109/tuffc.2008.691

[16] Hu, H. P., Hu, Y. T., Chen, C. Y., and Wang, J. A system of two piezoelectric transducers and a storage circuit for wireless energy transmission through a thin metal wall. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 55, 2312-2319 (2008)

https://doi.org/10.1109/tuffc.930

[17] Cui, Z. J., Hu, H. P., and Yang, F. Interaction between collinear periodic cracks in an infinite piezoelectric body. Applied Mathematics and Mechanics-English Edition, 29, 863-870 (2008) https://doi.org/10.1007/s10483-008-0704-x

[18] Hu, H. P., Chen, Z. G., Yang, J. S., and Hu, Y. T. An exact analysis of forced thickness-twist vibrations of multi-layered piezoelectric plates. Acta Mechanica Solida Sinica, 20, 211-218 (2007) https://doi.org/10.1007/s10338-007-0725-x

[19] Hu, H. P., Xue, H., and Hu, Y. T. A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 54, 1177-1187 (2007) https://doi.org/10.1109/tuffc.2007.371

[20] Hu, H. P., Cui, Z. J., and Cao, J. G. Performance of a piezoelectric bimorph harvester with variable width. Journal of Mechanics, 23, 197-202 (2007)

https://doi.org/10.1017/S1727719100001222

二、 非第一作者或通讯作者发表的SCI论文

[21] Wang, H. R., Hu, H. P., Yang, J. S., and Hu, Y. T. Spiral piezoelectric transducer in torsional motion as low-frequency power harvester. Applied Mathematics and Mechanics-English Edition, 34, 589-596 (2013)

[22] Wang, J. N., Wang, H. R., Hu, H. P., Luo, B., and Hu, Y. T. On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters. Smart Materials & Structures, 21, 015006 (2012)

[23] Wu, R. X., Wang, J., Du, J. K., Hu, Y. T., and Hu, H. P. Solutions of nonlinear thickness-shear vibrations of an infinite isotropic plate with the homotopy analysis method. Numerical Algorithms, 1-14 (2012)

[24] Xie, J. M., Yang, J. S., Hu, H. P., Hu, Y. T., and Chen, X. D. A piezoelectric energy harvester based on flow-induced flexural vibration of a circular cylinder. Journal of Intelligent Material Systems and Structures, 23, 135-139 (2012)

[25] Hu, Y. T., Wang, J. N., Yang, F., Xue, H., Hu, H. P., and Wang, J. The Effects of First-Order Strain Gradient in Micro Piezoelectric-Bimorph Power Harvesters. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 58, 849-852 (2011)

[26] Jiang, W., Chen, X. D., Luo, X., Hu, Y. T., and Hu, H. P. Vibration calculation of spatial multibody systems based on constraint-topology transformation. Journal of Mechanics, 27, 479-491 (2011)

[27] Xu, L. M., Du, H. L., HU, H. P., Shan, X. Y., Chen, H., Hu, Y. T., and Chen, X. D. Study on the Vibration Characteristics of a Finite-Width Corrugated Cylindrical Shell Piezoelectric Transducer. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 57, 1460-1469 (2010)

[28] Xue, H., Hu, H. P., Hu, Y. T., and Chen, X. D. An improved piezoelectric harvester available in scavenging-energy from the operating environment with either weaker or stronger vibration levels. Science in China Series G-Physics Mechanics & Astronomy, 52, 218-225 (2009)

[29] Li, H., Yang, F., Du, H. L., HU, H. P., Jiang, W., Chen, X. D., and Hu, Y. T. Dynamic characteristics of axially-symmetrical annular corrugated shell piezoelectric transducers. Acta Mechanica Solida Sinica, 22, 499-509 (2009)

[30] Wang, Y. X., Cui, Z. J., Hu, H. P., Yin, C. C., and Chen, C. Y. Study on an improved shock absorber used in the oil test pipe under impact load. Journal of Mechanics, 24, 127-135 (2008)

[31] Xu, L. M., Chen, M., Du, H. L., Hu, H. P., Hu, Y. T., Fan, H., and Yang, J. S. Vibration Characteristics of a Corrugated Cylindrical Shell Piezoelectric Transducer. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 55, 2502-2508 (2008)

[32] Hu, Y. T., Xue, H., Hu, T., and Hu, H. P. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 148-160 (2008)

[33] Hu, Y. T., Gao, F. R., Hu, H. P., and Chen, C. Y. Interactions inside a coupled oscillation system of bubble-viscous liquid-vessel and the induced stresses and strains within the vessel wall. Journal of Mechanics, 24, 55-61 (2008)

[34] Du, H. L., Xu, L. M., HU, H. P., Hu, Y. T., Chen, X. D., Fan, H., and Yang, J. S. High-frequency vibrations of corrugated cylindrical piezoelectric shells. Acta Mechanica Solida Sinica, 21, 564-572 (2008)

[35] Gao, F. R., Hu, H. P., Hu, Y. T., and Xiong, C. H. An analysis of a cylindrical thin shell as a piezoelectric transformer. Acta Mechanica Solida Sinica, 20, 163-170 (2007)

[36] Gao, F. R., Hu, Y. T., and Hu, H. P. Asymmetrical oscillation of a bubble confined inside a micro pseudoelastic blood vessel and the corresponding vessel wall stresses. International Journal of Solids and Structures, 44, 7197-7212 (2007)

[37] Hu, Y. T., Xue, H., and Hu, H. P. A piezoelectric power harvester with adjustable frequency through axial preloads. Smart Materials & Structures, 16, 1961-1966 (2007)

[38] Yang, J. S., Chen, Z. G., and HU, H. P. Electrically forced vibration of a thickness-twist mode piezoelectric resonator with non-uniform electrodes. Acta Mechanica Solida Sinica, 20, 266-274 (2007)

[39] Hu, Y. T., Hu, H. P., and Yang, J. S. A low frequency piezoelectric power harvester using a spiral-shaped bimorph. Science in China Series G-Physics Mechanics & Astronomy, 49, 649-659 (2006)

[40] Hu, Y. T., Li, G. Q., Jiang, S. N., Hu, H. P., and Yang, J. S. Interaction of electric charges in a piezoelectric with rigid external cracks. Applied Mathematics and Mechanics-English Edition, 26, 996-1006 (2005)

三、 发表的英文会议论文

[41] Hu, H. P., Zheng, Y. J., Shan, J., Hu, Y. T., Laude, V. Piezoelectric harvester scavenges energy from cavity of phononic crystal. In 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium ((EFTF/IFC), Besancon, France  9-13 July, 2017.

[42] Chen, H., Zheng, Y. J., Hu, H. P., Fan, G. F., and Lv, W. Z. Analysis on performance of an infrasound piezoelectric hydrophone. In 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Xi'an, 2016; 309-313.

[43] Zheng, Y. J., Chen, H., Hu, H. P., Fan, G. F., and Lv, W. Z. The sensitivity analysis of hydrophone using radially polarized piezoelectric cylindrical tube. In 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Xi'an, 2016; 189-192.

[44] Chen, H., Jiang, S., Dai, L. X., and Hu, H. P. Interaction between band gaps of beam piezoelectric phononic crystal. In 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Jinan, 2015; 480-484.

[45] Dai, L. X., Jiang, S., Li, P. S., and Hu, H. P. Transmission of radial vibration along piezoelectric tubular phononic crystal in parallel with resonant shunting circuits. In 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Jinan, 2015; 184-188.

[46] Cui, Z. J., Wang, Y. X., Hu, H. P., and Hu, Y. Revisit on the distributions of electric field and electric displacement in a three-layer beam-like piezoelectric harvester. In 2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Beijing, 2014; 102-105.

[47] Jiang, S., Lian, Z. Y., Dai, L. X., Hu, H. P., and Xue, H. Band gap frequencies of piezoelectric phononic crystals tuned by aixal force. In 2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Beijing, 2014; 110-113.

[48] Hu, H. P., Lian, Z. Y., Hu, L., Chen, C. Y., Wang, J. A piezoelectric harvester with torsional mode scavenging energy from angular vibrations. In 23rd International Conference on Adaptive Structures and Technologies, ICAST 2012, Nanjing, 2012.

[49] Hu, H. P., Lian, Z. Y., Hu, L., Hu, Y. T., Chen, C. Y., and Wang, J. A piezoelectric harvester with trosional mode scavenging energy from angular vibrations. In 23rd International Conference on Adaptive Structures and Technologies, Nanjing, China, October 11, 2012 - October 13, 2012, 2012.

[50] Lian, Z. Y., Hu, L., Cheng, J., Wang, Y. J., Hu, H. P., Hu, Y. T., and Wang, J. A piezoelectric unimorph power harvester operating with coupled extension and flexure modes. In 2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Shanghai, 2012; 415-418.

[51] Lan, J. W., Hu, L., Wang, H. R., Cheng, J., and Hu, H. P. Numerical Analysis on an Annular Bimorph Piezoelectric Energy Harvester with out-of-plane vibration modal. In 2011 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Shenzhen, 2011; 324-327.

[52] Liu, N., and Hu, H. P. Analysis of partially electroded piezoelectric actuators with nonuniform thickness for the purpose of reducing actuating shear stress concentration by Ansys. In 2011 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Shenzhen, 2011; 469-472.

[53] Hu, H. P., Wang, H. R., Xue, H., Jiang, S. N., and Hu, Y. T. Experimental research on nonlinear coupling between two sides of rectification in piezoelectric energy harvester. In 2010 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Xiamen, 2010; 424-427.

[54] Shan, X. Y., Hu, H. P., Xue, H., and Hu, Y. T. The finite element analysis on frequency shift of a piezoelectric plate operating in the thickness-shear mode under biasing fields. In 2010 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Xiamen, 2010; 432-435.

[55] Hu, H. P., Xue, H., Hu, Y. T., and Chen, X. D. Wireless energy transmission through a sealed wall using the acoustic-electric interaction of piezoelectric ceramics. In Proceedings of SPIE, Second International Conference on Smart Materials and Nanotechnology in Engineering, Weihai, 2009; 74936N.

[56] Hu, H. P., Xue, H., Jin, J., Wang, H. R., Hu, Y. T., and Chen, X. D. Adjusting the resonant frequency of a segmented energy harvester through circuit connection patterns. In 2009 Symposium on Piezoelectricity, Acoustic Waves and Device Applications and 2009 Symposium on Frequency Control Technology, Wuhan, 2009; 48-48.

[57] Hu, H. P., Hu, Y. T., and Chen, C. Y. Wireless Energy Transmission Through A Thin Metal Wall By Shear Wave Using Two Piezoelectric Transducers. In 2008 IEEE Ultrasonics Symposium, Vols 1-4 and Appendix, 2008; 2165-2168.

四、 著作章节

[58] Hu, Y. T., Xue, H., and Hu, H. P. Piezoelectric power/energy harvesters. In Analysis of Piezoelectric Structures and Devices, Fang, D. N.,Wang, J.,Chen, W. Q., Eds. 高等教育出版社,De Gruyter: Beijing, 2013.

五、 在国内学术期刊发表的论文

[59] 江山, 廉紫阳, 戴隆翔, 胡洪平. 用精确电场和等效电路法计算压电双晶片梁的等效电容. 中国科技论文, 10, 1245-1249 (2015)

[60] 王玉珏, 罗宾, 周宇杰, 胡洪平. 双层微球壳流固耦联振动及声散射分析. 应用力学学报, 30, 674-679 (2013)

[61] 王海仁, 姚明格, 胡洪平, 胡元太. 集中质量对圆环形压电变压器动力特征的影响. 声学技术, 32, 156-159 (2013)

[62] 曲忠仁, 程军, 程豪, 谢寿昌, 彭原平, 周绪国, 胡洪平, 崔之健. 动态负压射孔孔道压实带碎屑清洗输送. 固体力学学报, 33, 327-330 (2013)

[63] 李守鑫, 胡林, 张昌美, 刘雪峰, 宋杰, 周绪国, 胡洪平, 纪拥军. 动态负压射孔工艺参数对动态负压的影响. 固体力学学报, 33, 323-326 (2013)

[64] 胡洪平, 程昆煜, 谢旋, 王骥. 双介质磁电弹性材料中的界面波. 华中科技大学学报: 自然科学版, 41, 86-90 (2013)

[65] 罗宾, 姚明格, 胡洪平, 胡元太. 双层圆管中超声气泡的受激振动分析. 声学技术, 31, 381-384 (2012)

[66] 程昆煜, 胡林, 胡洪平, 胡元太. 结构参数对压电声透系统的影响. 声学技术, 30, 381-384 (2011)

[67] 陈云峰, 胡林, 张彦辉, 胡洪平. 实现环流速度场的推流器布置. 应用力学学报, 28, 654-657 (2011)

[68] 杨峰, 胡洪平, 胡元太. 环形波纹壳状压电换能器的动态特性分析. 声学技术, 29, 87-90 (2010)

[69] 薛欢, 胡元太, 胡洪平, 高发荣. 弱振动环境中的压电俘能器. 华中科技大学学报(自然科学版), 36, 54-57 (2008)

[70] 崔之健, 胡洪平, 杨峰. 无限压电体内共线周期裂纹间的相互作用. 应用数学和力学, 29, 783-789 (2008)

[71] 崔之健, 胡洪平, 胡元太, 陈传尧. 考虑上部管柱变形影响的减震器动力学分析. 华中科技大学学报(自然科学版), 36, 106-108 (2008)

[72] 胡洪平, 高发荣, 薛欢, 胡元太. 低频螺旋状压电俘能器结构性能分析. 固体力学学报, 28, 87-92 (2007)

[73] 崔之健, 胡洪平, 蒋树农, 陈子光, 胡元太. 新型空心液力反馈稠油泵及其结构优化设计. 石油机械, 34, 39-41 (2006)

[74] 胡元太, 李国清, 蒋树农, 胡洪平, 杨嘉实. 具有刚性双边裂纹的压电介质中的电荷相互作用分析. 应用数学和力学, 27, 911-920 (2005)

[75] 胡洪平, 高发荣, 胡元太. 微球壳轴对称流固耦联振动分析. 华中科技大学学报(自然科学版), 33, 98-101 (2004)

[76] 高发荣, 胡洪平, 胡元太. 外层壳及其阻尼对水中双层球壳声散射的影响. 华中科技大学学报(自然科学版), 33, 102-104 (2004)

六、 授权专利

[77] 胡洪平, 江山, 姜伟, 胡元太,陈学东. 一种周期腔体型低频宽带隙隔振器及制备方法. 专利号:ZL201510872673.0, 2016.

[78] 胡洪平,杨嘉实,胡元太,陈学东. 螺旋弹簧型低频压电俘能器. 专利号:ZL 201110234398.1, 2013.

[79] 胡元太, 薛欢, 胡洪平, 蒋树农. 能高效俘能和储能的压电俘能器. 专利号:ZL 200610031553.9, 2008.

[80] 胡元太, 王庆明, 薛欢, 胡洪平. 生物传感芯片. 专利号:ZL 200620052359.4, 2007.