欢迎访问华中科技大学土木工程与力学学院!

公告栏:
网站搜索:

杨辉

发布者:admin         发布时间:2014-02-19 14:20         浏览次数:

 

undefined


                 杨辉

                 教授

         第十三批国家千人计划青年千人

教育背景:

2002 - 2006 华中科技大学,工程力学,学士

2009 - 2010 美国宾夕法尼亚州立大学,工程力学,硕士

2009 - 2014 美国宾夕法尼亚州立大学,工程科学与力学,博士

工作经历:

2015.01 – 2015. 09美国宾夕法尼亚州立大学,博士后

2015.10 – 2017. 09美国塔夫茨大学,博士后

2016.06 – 2017. 03美国西北大学,博士后

2017.10 – 华中科技大学力学系,青年千人,教授,博士生导师

主要研究方向:

新型储能系统的电化学-力学问题,例如锂离子、钠离子电池等,以及电极结构、电池系统的设计;

核辐照环境下材料的损伤与失效研究;

跨尺度、多场耦合模拟仿真:密度泛函理论(DFT),分子动力学,反应力场(ReaxFF),相场法(Phase-field method),应变梯度、晶体塑性有限元;

原位材料观测与表征:纳米压痕,高倍原位透射电子显微镜;

软材料、细胞力学;

增材制造的跨尺度、多场耦合模拟。

主要学术成就:

主要从事新能源(电池、核能)相关材料的力学跨学科研究,先后参加了多项美国国家自然科学基金、美国能源部等机构资助的科研项目。在新兴高性能锂电池电极材料充/放电过程中的锂化动力学、材料变形与破坏、以及电极材料结构的优化设计等方面取得了一系列突出研究成果,其中既包括实时、原位的高倍透射电子显微镜实验观测方法,又包括跨尺度、多场耦合数值计算方法及相关的理论建模。从2012年到目前,在固体力学及工程科学领域的顶级期刊上发表论文20多篇;其中,以第一或同等贡献第一作者发表在国际著名期刊有Journal of the Mechanics and Physics of Solids固体力学顶级期刊)、Nature CommunicationsNano LettersACS NanoExtreme Mechanics Letters。所发表论文被引用800多次,H指数为15


课题组招收相关研究方向的博士后,年薪税前24-30万元,欢迎加盟!

欢迎有力学、机械、材料、电化学、数学知识背景且有志于从事科学研究的学生报考硕士/博士研究生。

Email: huiyang2017@hust.edu.cn




                                                Hui Yang, Ph.D.

Department of Mechanics

School of Civil Engineering and Mechanics

Huazhong University of Science and Technology

Wuhan, Hubei 430074, China

Email: huiyang2017@hust.edu.cn



                     EDUCATION


        Ph.D.           Engineering Science and Mechanics, 2014

                    The Pennsylvania State University, University Park, PA, USA

M.S.            Engineering Mechanics, 2010

                    The Pennsylvania State University, University Park, PA, USA

B.S.             Engineering Mechanics, 2006

                    Huazhong University of Science and Technology, Wuhan, Hubei, China



RESEARCH INTERESTS

               · Mechanics of energy-storage technologies, i.e., lithium/sodium-ion batteries.

               · Mechanics of irradiated materials

               · Molecular dynamics, reactive force field (ReaxFF), and finite element modeling.

               · In-situ experimentation, i.e., TEM, nano-indentation

               · Phase field modeling, strain gradient plasticity, crystal plasticity

               · Mechanics of soft matter

               · Cell mechanics

               · Multi-physical finite-element methods for additive manufacturing




             PROFESSIONAL EXPERIENCE

            · Professor, 10/2017 - Present

               Department of Mechanics

               School of Civil Engineering and Mechanics

               Huazhong University of Science and Technology

               Wuhan, Hubei, China

            · Postdoctoral Fellow, 10/2015 – 09/2017

              Department of Mechanical Engineering

              Tufts University, Medford, MA, USA

            · Postdoctoral Fellow, 06/2016 - 03/2017

              Department of Civil and Environmental Engineering

              Northwestern University, Evanston, IL, USA

           · Postdoctoral Researcher, 01/2015 - 10/2015

              Department of Engineering Science and Mechanics

              The Pennsylvania State University, University Park, PA, USA



           

            JOURNAL PUBLICATIONS

    Summary: 820 times of total citations (Google Scholar), H-index=15.

(**: Equal contribution; IF: Impact factor)

           1. Chen, T.; Yang, H.; Li, J.; Zhang, S., Mechanics of electrochemically driven mechanical energy harvesting. Extreme Mechanics Letters, 2017. 15: p. 78-82.

           2. Xiao, X.; Chen, Q.; Yang, H.; Duan, H.; Qu, J., A mechanistic model for depth-dependent hardness of ion irradiated metals. Journal of Nuclear Materials, 2017. 485: p. 80-89.

           3. Yang, H.; Qu, J., Advance in lithiation mechanics of anode materials in lithium ion battery. Science & Technology Review, 2016. 34 (23): p. 88-98.

           4. Kim, S.; Choi, S. J.; Zhao, K.; Yang, H.; Gobbi, G.; Zhang, S.; Li, J.; Electrochemically driven mechanical energy harvesting. Nature Communications, 2016. 7: p.10146. (IF = 11.329)

           5. Xiao, Q.**; Gu, M.**; Yang, H.**; Li, B.; Zhang, C.; Liu, Y.; Liu, F.; Dai, F.; Yang, L.; Liu, Z.; Xiao, X.; Liu, G.; Zhao, P.; Zhang, S.; Wang, C.-M.; Lu, Y.; Cai, M., Inward lithium-ion breathing of hierarchically porous silicon anodes. Nature Communications, 2015. 6: p. 8844. (IF = 11.329)

           6. Luo, L.; Zhao, P.; Yang, H.; Liu, B.; Zhang, J.-G.; Cui, Y.; Yu, G.; Zhang, S.; Wang, C.-M., Surface coating constraint induced self-discharging of silicon nanoparticles as anodes for lithium ion batteries. Nano Letters, 2015. 15 (10): p. 7016-7022. (IF = 13.779)

           7. Luo, L.**; Yang, H.**; Yan, P.; Travis, J. J.; Liu, N.; Piper, D. M.; Lee, S.-H.; George, S. M.; Zhang, J.-G.; Cui, Y.; Zhang, S.; Ban, C.; Wang, C.-M., Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery. Acs Nano, 2015. 9(5): p. 5559-5566. (IF = 13.334)

           8. Yang, H.; Liang, W.; Guo, X.; Wang, C.-M.; Zhang, S., Strong kinetics-stress coupling in lithiation of Si and Ge anodes. Extreme Mechanics Letters, 2015. 2(0): p. 1-6.

          9. Yang, H.; Fan, F.; Liang, W.; Guo, X.; Zhu, T.; Zhang, S., A chemo-mechanical model of lithiation in silicon. Journal of the Mechanics and Physics of Solids, 2014. 70(0): p. 349-361. (IF = 3.875)

          10. Wang, C.-M.; Gu, M.; Yang, H.; Perea, D.E.; Zhang, S., In-situ TEM study of internal and external stress on lithiation behavior of high capacity anode materials with a large volume change. Microscopy and Microanalysis, 2014. 20(SupplementS3): p. 1536-1537. (IF = 1.730)

          11. Gu, M.**; Yang, H.**; Perea, D.E.; Zhang, J.-G.; Zhang, S.; Wang, C.-M., Bending-induced symmetry breaking of lithiation in germanium nanowires. Nano Letters, 2014. 14(8): p. 4622-4627. (IF = 13.779)

          12. Liang, W.; Hong, L.; Yang, H.; Fan, F.; Liu, Y.; Li, H.; Li, J.; Huang, J.Y.; Chen, L.-Q.; Zhu, T.; Zhang, S., Nanovoid formation and annihilation in gallium nanodroplets under lithiation-delithiation cycling. Nano Letters, 2013. 13(11): p. 5212-5217. (IF = 13.779)

          13. Huang, X.; Yang, H.; Liang, W.; Raju, M.; Terrones, M.; Crespi, V.H.; van Duin, A.C.T.; Zhang, S., Lithiation induced corrosive fracture in defective carbon nanotubes. Applied Physics Letters, 2013. 103(15): p. 153901-4. (IF = 3.142)

          14. Fan, F.F.; Huang, S.; Yang, H.; Raju, M.; Datta, D.; Shenoy, V.B.; van Duin, A.C.T.; Zhang, S.L.; Zhu, T., Mechanical properties of amorphous LixSi alloys: a reactive force field study. Modelling and Simulation in Materials Science and Engineering, 2013. 21(7): p. 074002. (IF = 1.859)

         15. Liang, W.; Yang, H.; Fan, F.; Liu, Y.; Liu, X.H.; Huang, J.Y.; Zhu, T.; Zhang, S., Tough germanium nanoparticles under electrochemical cycling. Acs Nano, 2013. 7(4): p. 3427-3433. (IF = 13.334)

          16. Yang, H.; Huang, X.; Liang, W.; van Duin, A.C.T.; Raju, M.; Zhang, S., Self-weakening in lithiated graphene electrodes. Chemical Physics Letters, 2013. 563(0): p. 58-62. (IF = 1.860)

          17. Liu, X.H.; Fan, F.; Yang, H.; Zhang, S.; Huang, J.Y.; Zhu, T., Self-limiting lithiation in silicon nanowires. Acs Nano, 2012. 7(2): p. 1495-1503. (IF = 13.334)

          18. Segall, A.E.; Drapaca, C.; Engels, D.; Zhu, T.; Yang, H., Direct and inverse solutions for thermal- and stress-transients and the analytical determination of boundary conditions using remote temperature or strain data. Journal of Pressure Vessel Technology, 2012. 134(4): p. 041011. (IF = 0.476)

          19. Huang, X.; Yang, H.; van Duin, A.C.T.; Hsia, K.J.; Zhang, S., Chemomechanics control of tearing paths in graphene. Physical Review B, 2012. 85(19): p. 195453. (IF = 3.178)

          20. Yang, H.; Huang, S.; Huang, X.; Fan, F.; Liang, W.; Liu, X.H.; Chen, L.-Q.; Huang, J.Y.; Li, J.; Zhu, T.; Zhang, S., Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Letters, 2012. 12(4): p. 1953-1958. (IF = 13.779)

           1. Yang, H.; Qu, J., A chemo-mechanical model for lithiation/delithiation cycling behaviors of high-capacity anode materials, 2017 SES Annual Technical Meeting, Boston, MA, USA.

           2. Yang, H.; Qu, J., Fracture toughness of LixSi alloys in lithium ion battery, 2016 ASME's International Mechanical Engineering Congress and Exposition (IMECE), Phoenix, AZ, USA.

           3. Xiao, X.; Yang, H.; Duan, H.; Qu, J., The hardness prediction of ion-irradiated metals by nanoindentation: a theoretical model and finite element simulation, 2016 ASME's International Mechanical Engineering Congress and Exposition (IMECE), Phoenix, AZ, USA.

           4. Yang, H.; Qu, J., Chemo-Mechanical Modeling of Nanoindentation of LixSi Alloys in Lithium Ion Battery, 2016 ASME's International Mechanical Engineering Congress and Exposition (IMECE), Phoenix, AZ, USA.

           5. Yang, H.; Qu, J., Fracture toughness of LixSi alloys in lithium ion battery, 24th International Congress of Theoretical and Applied Mechanics (ICTAM 2016), Montreal, Canada.

           6. Kim, S.; Choi, S. J.; Zhao, K.; Yang, H.; Gobbi, G.; Zhang, S.; Li, J., Electrochemically driven mechanical energy harvesting, 2015 MRS Fall Meeting & Exhibit, Boston, MA, USA.

           7. Yang, H.; Zhang, S., A chemo-mechanical model of delithiation in high-capacity anode materials, 2014 SES Annual Technical Meeting, West Lafayette, IN, USA.

           8. Yang, H.; Zhang, S., Lithiation mechanics of high-capacity anode materials, ESM Today 2014, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, USA.

            9. Zhang, S.; Yang, H., Degradation mechanics of high-capacity nanostructured electrode materials, Plasticity, Damage & Fracture 2014, Freeport, Bahamas.

           10. Zhang, S.; Yang, H.; Zhu, T., In-situ lithiation mechanics of silicon and beyond, ASME International Mechanical Engineering Congress & Exposition 2013, San Diego, CA, USA.

           11. Liang, W.; Hong, L.; Yang, H.; Chen, L.-Q.; Huang, J.Y.; Zhu, T.; Zhang, S., In situ TEM study of self-healing gallium nanodroplets under electrochemical cycling, 2013 SES Annual Technical Meeting, Providence, RI, USA.

           12. Yang, H.; Zhang, S., In situ lithiation mechanics of silicon nanoelectrodes, ESM Today 2013, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, USA.

           13. Yang, H.; Zhang, S., Mechanics of lithiation in silicon, TMS 2013 142nd Annual Meeting and Exhibition, San Antonio, TX, USA.

           14. Zhang, S.; Yang, H.; Liang, W.; Zhu, T.; Huang, J. Y., Anisotropy swelling in lithiated silicon, ASME International Mechanical Engineering Congress & Exposition 2012, Houston, TX, USA.

           15. Zhang, S.; Yang, H.; Huang, X.; Huang, S.; Zhu, T., Multiscale Modeling of Anisotropic Growth in Lithiated Silicon Nanowires, TMS 2012 141st Annual Meeting and Exhibition, Orlando, FL, USA.

           16. Zhang, S.; Yang, H.; Huang, X., Multiscale modeling of anisotropic swelling in lithiated silicon nanowires, 2011 SES Annual Technical Meeting, Evanston, IL, USA.

            · The Young 1000-Talent Program of China, Chinese Government, China, May 2017.

            · Travel fellowship of the U.S. National Committee for Theoretical and Applied Mechanics (USNC/TAM), USA, 2016.